Conservation Laws in the Modeling of Moving Crowds
نویسندگان
چکیده
which depends Lipschitz continuously from the data and, by [12, Theorem 2.6], also from v and ~v. According to (2), at time t the pedestrian at x moves along a prescribed trajectory, an integral curve of ~v, with a speed v(ρ) that depends on ρ evaluated at point x and time t. On the contrary, Section 2 is devoted to (1) with the speed of the individual at x depending on an average of the density ρ in a neighborhood of x. The resulting model has a rich analytical structure, the solutions being also differentiable with respect to the data and to the speed law. In Section 3 the direction chosen by the pedestrian at x depends from an average of the density gradient ∇ρ around x, while his/her speed depends from ρ evaluated at x. The resulting solutions display qualitative properties usually seen in context
منابع مشابه
Conservation Laws with Unilateral Constraints in Traffic Modeling
Macroscopic models for both vehicular and pedestrian traffic are based on conservation laws. The mathematical description of toll gates along roads or of the escape dynamics for crowds needs the introduction of unilateral constraints on the observable flow. This note presents a rigorous approach to these constraints, and numerical integrations of the resulting models are included to show their ...
متن کاملHelicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight
An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کامل